AT-3(ID:368/at:001)

Algebraic Translator 


Algebraic Translator - original name of MATH-MATIC.
Used A-3 (ARITH-MATC) as an intermediary language and could accept A-3 embedded language as well


Related languages
A-3 => AT-3   Intermediate language for
Laning and Zierler => AT-3   Influence
AT-3 => MATH-MATIC   Renaming

References:
  • Bemer, R. W. "The Status of Automatic Programming for Scientific Problems" view details Abstract: A catalogue of automatic coding systems that are either operational or in the process of development together with brief descriptions of some of the more important ones Extract: Summary
    Let me elaborate these points with examples. UNICODE is expected to require about fifteen man-years. Most modern assembly systems must take from six to ten man-years. SCAT expects to absorb twelve people for most of a year. The initial writing of the 704 FORTRAN required about twenty-five man-years. Split among many different machines, IBM's Applied Programming Department has over a hundred and twenty programmers. Sperry Rand probably has more than this, and for utility and automatic coding systems only! Add to these the number of customer programmers also engaged in writing similar systems, and you will see that the total is overwhelming.
    Perhaps five to six man-years are being expended to write the Alodel 2 FORTRAN for the 704, trimming bugs and getting better documentation for incorporation into the even larger supervisory systems of various installations. If available, more could undoubtedly be expended to bring the original system up to the limit of what we can now conceive. Maintenance is a very sizable portion of the entire effort going into a system.
    Certainly, all of us have a few skeletons in the closet when it comes to adapting old systems to new machines. Hardly anything more than the flow charts is reusable in writing 709 FORTRAN; changes in the characteristics of instructions, and tricky coding, have done for the rest. This is true of every effort I am familiar with, not just IBM's.
    What am I leading up to? Simply that the day of diverse development of automatic coding systems is either out or, if not, should be. The list of systems collected here illustrates a vast amount of duplication and incomplete conception. A computer manufacturer should produce both the product and the means to use the product, but this should be done with the full co-operation of responsible users. There is a gratifying trend toward such unification in such organizations as SHARE, USE, GUIDE, DUO, etc. The PACT group was a shining example in its day. Many other coding systems, such as FLAIR, PRINT, FORTRAN, and USE, have been done as the result of partial co-operation. FORTRAN for the 705 seems to me to be an ideally balanced project, the burden being carried equally by IBM and its customers.
    Finally, let me make a recommendation to all computer installations. There seems to be a reasonably sharp distinction between people who program and use computers as a tool and those who are programmers and live to make things easy for the other people. If you have the latter at your installation, do not waste them on production and do not waste them on a private effort in automatic coding in a day when that type of project is so complex. Offer them in a cooperative venture with your manufacturer (they still remain your employees) and give him the benefit of the practical experience in your problems. You will get your investment back many times over in ease of programming and the guarantee that your problems have been considered.
    Extract: IT, FORTRANSIT, SAP, SOAP, SOHIO
    The IT language is also showing up in future plans for many different computers. Case Institute, having just completed an intermediate symbolic assembly to accept IT output, is starting to write an IT processor for UNIVAC. This is expected to be working by late summer of 1958. One of the original programmers at Carnegie Tech spent the last summer at Ramo-Wooldridge to write IT for the 1103A. This project is complete except for input-output and may be expected to be operational by December, 1957. IT is also being done for the IBM 705-1, 2 by Standard Oil of Ohio, with no expected completion date known yet. It is interesting to note that Sohio is also participating in the 705 FORTRAN effort and will undoubtedly serve as the basic source of FORTRAN-to- IT-to-FORTRAN translational information. A graduate student at the University of Michigan is producing SAP output for IT (rather than SOAP) so that IT will run on the 704; this, however, is only for experience; it would be much more profitable to write a pre-processor from IT to FORTRAN (the reverse of FOR TRANSIT) and utilize the power of FORTRAN for free. Extract: AT-3
    AT3 is an algebraic coding system for UNIVAC I and II which closely resembles FORTRAN. (I should mention here that, when I compare another system to FORTRAN, I mean to establish only the category that system fits into and not to evaluate it against FORTRAN, for there are many features of AT3 and other languages which are perhaps improvements on the corresponding FORTRAN components.) AT3 has been used for a year, with a preliminary manual, in two installations and is about to be released with its final manual for general usage. For purposes of negotiability of programs, if desired, AT3 is mappable into FORTRAN and vice versa.
          in "Proceedings of the Fourth Annual Computer Applications Symposium" , Armour Research Foundation, Illinois Institute of Technology, Chicago, Illinois 1957 view details
  • Carr, John W III; "Computer Programming" volume 2, chapter 2, pp115-121 view details
          in E. M. Crabbe, S. Ramo, and D. E. Wooldridge (eds.) "Handbook of Automation, Computation, and Control," John Wiley & Sons, Inc., New York, 1959. view details
  • Rosen, Saul "Programming Systems and Languages: a historical Survey" (reprinted in Rosen, Saul (ed) Programming Systems & Languages. McGraw Hill, New York, 1967) view details Extract: Early UNIVAC languages
    The first large scale electronic computer available commercially was the Univac I (1951). The first Automatic Programming group associated with a commercial computer effort was the group set up by Dr. Grace Hopper in what was then the Eckert-Mauchly Computer Corp., and which later became the Univac Division of Sperry Rand. The Univac had been designed so as to be relatively easy to program in its own code. It was a decimal, alphanumeric machine, with mnemonic instructions that were easy to remember and use. The 12 character word made scaling of many fixed-point calculations fairly easy. It was not always easy to see the advantage of assembly systems and compilers that were often slow and clumsy on a machine with only 12,000 characters of high speed storage (200 microseconds average access time per 12 character word). In spite of occasional setbacks, Dr. Hopper persevered in her belief that programming should and would be done in problem-oriented languages. Her group embarked on the development of a whole series of languages, of which the most used was probably A2, a compiler that provided a three address floating point system by compiling calls on floating point subroutines stored in main memory. The Algebraic Translator AT3 (Math-Matic) contributed a number of ideas to Algol and other compiler efforts, but its own usefulness was very much limited by the fact that Univac had become obsolete as a scientific computer before AT3 was finished. The B0 (Flow-Matic) compiler was one of the major influences on the COBOL language development which will be discussed at greater length later. The first sort generators were produced by the Univac programming group in 1951. They also produced what was probably the first large scale symbol manipulation program, a program that performed differentiation of formulas submitted to it in symbolic form.
          in [AFIPS JCC 25] Proceedings of the 1964 Spring Joint Computer Conference SJCC 1964 view details
  • Sammet, Jean E. "Computer Languages - Principles and History" Englewood Cliffs, N.J. Prentice-Hall 1969. p.135. view details
          in [AFIPS JCC 25] Proceedings of the 1964 Spring Joint Computer Conference SJCC 1964 view details
  • Knuth, Donald Ervin, and Luis Trabb Pardo "The early development of programming languages" pp419-96 view details
          in Belzer, J. ; A. G. Holzman, A. Kent, (eds) Encyclopedia of Computer Science and Technology, Marcel Dekker, Inc., New York. 1979 view details