DATACODE I(ID:55/dat006)Burrough compilerCompiler for Burroughs/Datatron 200 series, Burroughs internal language, operational August 1957 Hardware:
References: Let me elaborate these points with examples. UNICODE is expected to require about fifteen man-years. Most modern assembly systems must take from six to ten man-years. SCAT expects to absorb twelve people for most of a year. The initial writing of the 704 FORTRAN required about twenty-five man-years. Split among many different machines, IBM's Applied Programming Department has over a hundred and twenty programmers. Sperry Rand probably has more than this, and for utility and automatic coding systems only! Add to these the number of customer programmers also engaged in writing similar systems, and you will see that the total is overwhelming. Perhaps five to six man-years are being expended to write the Alodel 2 FORTRAN for the 704, trimming bugs and getting better documentation for incorporation into the even larger supervisory systems of various installations. If available, more could undoubtedly be expended to bring the original system up to the limit of what we can now conceive. Maintenance is a very sizable portion of the entire effort going into a system. Certainly, all of us have a few skeletons in the closet when it comes to adapting old systems to new machines. Hardly anything more than the flow charts is reusable in writing 709 FORTRAN; changes in the characteristics of instructions, and tricky coding, have done for the rest. This is true of every effort I am familiar with, not just IBM's. What am I leading up to? Simply that the day of diverse development of automatic coding systems is either out or, if not, should be. The list of systems collected here illustrates a vast amount of duplication and incomplete conception. A computer manufacturer should produce both the product and the means to use the product, but this should be done with the full co-operation of responsible users. There is a gratifying trend toward such unification in such organizations as SHARE, USE, GUIDE, DUO, etc. The PACT group was a shining example in its day. Many other coding systems, such as FLAIR, PRINT, FORTRAN, and USE, have been done as the result of partial co-operation. FORTRAN for the 705 seems to me to be an ideally balanced project, the burden being carried equally by IBM and its customers. Finally, let me make a recommendation to all computer installations. There seems to be a reasonably sharp distinction between people who program and use computers as a tool and those who are programmers and live to make things easy for the other people. If you have the latter at your installation, do not waste them on production and do not waste them on a private effort in automatic coding in a day when that type of project is so complex. Offer them in a cooperative venture with your manufacturer (they still remain your employees) and give him the benefit of the practical experience in your problems. You will get your investment back many times over in ease of programming and the guarantee that your problems have been considered. Extract: IT, FORTRANSIT, SAP, SOAP, SOHIO The IT language is also showing up in future plans for many different computers. Case Institute, having just completed an intermediate symbolic assembly to accept IT output, is starting to write an IT processor for UNIVAC. This is expected to be working by late summer of 1958. One of the original programmers at Carnegie Tech spent the last summer at Ramo-Wooldridge to write IT for the 1103A. This project is complete except for input-output and may be expected to be operational by December, 1957. IT is also being done for the IBM 705-1, 2 by Standard Oil of Ohio, with no expected completion date known yet. It is interesting to note that Sohio is also participating in the 705 FORTRAN effort and will undoubtedly serve as the basic source of FORTRAN-to- IT-to-FORTRAN translational information. A graduate student at the University of Michigan is producing SAP output for IT (rather than SOAP) so that IT will run on the 704; this, however, is only for experience; it would be much more profitable to write a pre-processor from IT to FORTRAN (the reverse of FOR TRANSIT) and utilize the power of FORTRAN for free. in "Proceedings of the Fourth Annual Computer Applications Symposium" , Armour Research Foundation, Illinois Institute of Technology, Chicago, Illinois 1957 view details in "Proceedings of the Fourth Annual Computer Applications Symposium" , Armour Research Foundation, Illinois Institute of Technology, Chicago, Illinois 1957 view details Bob Bemer states that this table (which appeared sporadically in CACM) was partly used as a space filler. The last version was enshrined in Sammet (1969) and the attribution there is normally misquoted. in [ACM] CACM 2(05) May 1959 view details in E. M. Crabbe, S. Ramo, and D. E. Wooldridge (eds.) "Handbook of Automation, Computation, and Control," John Wiley & Sons, Inc., New York, 1959. view details Univac LARC is designed for large-scale business data processing as well as scientific computing. This includes any problems requiring large amounts of input/output and extremely fast computing, such as data retrieval, linear programming, language translation, atomic codes, equipment design, largescale customer accounting and billing, etc. University of California Lawrence Radiation Laboratory Located at Livermore, California, system is used for the solution of differential equations. [?] Outstanding features are ultra high computing speeds and the input-output control completely independent of computing. Due to the Univac LARC's unusual design features, it is possible to adapt any source of input/output to the Univac LARC. It combines the advantages of Solid State components, modular construction, overlapping operations, automatic error correction and a very fast and a very large memory system. [?] Outstanding features include a two computer system (arithmetic, input-output processor); decimal fixed or floating point with provisions for double precision for double precision arithmetic; single bit error detection of information in transmission and arithmetic operation; and balanced ratio of high speed auxiliary storage with core storage. Unique system advantages include a two computer system, which allows versatility and flexibility for handling input-output equipment, and program interrupt on programmer contingency and machine error, which allows greater ease in programming. in E. M. Crabbe, S. Ramo, and D. E. Wooldridge (eds.) "Handbook of Automation, Computation, and Control," John Wiley & Sons, Inc., New York, 1959. view details in [ACM] CACM 6(03) (Mar 1963) view details |