COMPASS(ID:1918/com026)


for COMPrehensive ASSembler. Assembly language on CDC machines.


Related languages
COMPASS => COMPAX   Superset

References:
  • Weik, Martin H. "A Third Survey of Domestic Electronic Digital Computing Systems" Rpt 1115, BRL, Maryland, 1961 view details External link: Online copy at Computer History Museum Extract: LARC details
    Univac LARC is designed for large-scale business data processing as well as scientific computing. This includes any problems requiring large amounts of input/output and extremely fast computing, such as data retrieval, linear programming, language translation, atomic codes, equipment design, largescale customer accounting and billing, etc.

        University of California
        Lawrence Radiation Laboratory
        Located at Livermore, California, system is used for the
        solution of differential equations.
    [?]
    Outstanding features are ultra high computing speeds and the input-output control completely independent of computing. Due to the Univac LARC's unusual design features, it is possible to adapt any source of input/output to the Univac LARC. It combines the advantages of Solid State components, modular construction, overlapping operations, automatic error correction and a very fast and a very large memory system.
    [?]
    Outstanding features include a two computer system (arithmetic, input-output processor); decimal fixed or floating point with provisions for double
    precision for double precision arithmetic; single bit error detection of information in transmission and arithmetic operation; and balanced ratio of high speed auxiliary storage with core storage.
    Unique system advantages include a two computer system, which allows versatility and flexibility for handling input-output equipment, and program interrupt on programmer contingency and machine error, which allows greater ease in programming.
  • Weik, Martin H. "A Fourth Survey of Domestic Electronic Digital Computing Systems" Report No. 1227, January 1964 Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland view details External link: Online copy at Computer History Museum
  • Goldstein, M. "Computer Languages" The American Mathematical Monthly, Vol. 72, No. 2, Part 2: Computers and Computing Feb., 1965 pp141-146 view details Extract: Languages scene
    An important step in artificial language development centered around the
    idea that i t is desirable to be able to exchange computer programs between
    different computer labs or at least between programmers on a universal level.
    In 1958, after much work, a committee representing an active European computer
    organization, GAMM, and a United States computer organization, ACNI,
    published a report (updated two years later) on an algebraic language called
    ALGOL. The language was designed to be a vehicle for expressing the processes
    of scientific and engineering calculations of numerical analysis. Equal stress was
    placed on man-to-man and man-to-machine communication. It attempts to
    specify a language which included those features of algebraic languages on
    which it was reasonable to expect a wide range of agreement, and to obtain a
    language that is technically sound. In this respect, ALGOL Set an important
    precedent in language definition by presenting a rigorous definition of its syntax.
    ALGOL compilers have also been written for many different computers.
    It is very popular among university and mathematically oriented computer
    people especially in Western Europe. For some time in the United States, it will
    remain second to FORTRAN, with FORTRAN becoming more and more like
    ALGOL.
    The largest user of data-processing equipment is the United States Government.
    Prodded in Part by a recognition of the tremendous programming investment
    and in part by the suggestion that a common language would result only
    if an active Sponsor supported it, the Defense Department brought together
    representatives of the major manufacturers and Users of data-processing equipment
    to discuss the problems associated with the lack of standard programming
    languages in the data processing area. This was the start of the conference on
    Data Systems Languages that went on to produce COBOL, the common business-
    oriented language. COBOL is a subset of normal English suitable for expressing
    the solution to business data processing problems. The language is
    now implemented in various forms on every commercial computer.
    In addition to popular languages like FORTRAN and ALGOL, we have
    some languages used perhaps by only one computing group such as FLOCO,
    IVY, MADCAP and COLASL; languages intended for student problems, a
    sophisticated one like MAD, others like BALGOL, CORC, PUFFT and various
    versions of university implemented ALGOL compilers; business languages in addition
    to COBOL like FACT, COMTRAN and UNICODE; assembly (machine)
    languages for every computer such as FAP, TAC, USE, COMPASS; languages to simplify problem solving in "artificial intelligence," such as the so-called list
    processing languages IPL V, LISP 1.5, SLIP and a more recent one NU SPEAK;
    string manipulation languages to simplify the manipulation of symbols rather
    than numeric data like COMIT, SHADOW and SNOBOL; languages for
    command and control problems like JOVIAL and NELIAC; languages to simplify
    doing symbolic algebra by computer such as ALPAK and FORMAC;
    a proposed new programming language tentatively titled NPL; and many,
    many, more. A veritable tower of BABEL!
  • Seidman, Stephen B. and Pearl Y. Wang. Assembly language programming in COMPASS Prentice-Hall Englewood Cliffs, N.J., 1967 view details
  • Stock, Karl F. "A listing of some programming languages and their users" in RZ-Informationen. Graz: Rechenzentrum Graz 1971 57 view details Abstract: 321 Programmiersprachen mit Angabe der Computer-Hersteller, auf deren Anlagen die entsprechenden Sprachen verwendet werden kennen. Register der 74 Computer-Firmen; Reihenfolge der Programmiersprachen nach der Anzahl der Herstellerfirmen, auf deren Anlagen die Sprache implementiert ist; Reihenfolge der Herstellerfirmen nach der Anzahl der verwendeten Programmiersprachen.

    [321 programming languages with indication of the computer manufacturers, on whose machinery the appropriate languages are used to know.  Register of the 74 computer companies;  Sequence of the programming languages after the number of manufacturing firms, on whose plants the language is implemented;  Sequence of the manufacturing firms after the number of used programming languages.]
  • Stock, Marylene and Stock, Karl F. "Bibliography of Programming Languages: Books, User Manuals and Articles from PLANKALKUL to PL/I" Verlag Dokumentation, Pullach/Munchen 1973 135 view details Abstract: PREFACE  AND  INTRODUCTION
    The exact number of all the programming languages still in use, and those which are no longer used, is unknown. Zemanek calls the abundance of programming languages and their many dialects a "language Babel". When a new programming language is developed, only its name is known at first and it takes a while before publications about it appear. For some languages, the only relevant literature stays inside the individual companies; some are reported on in papers and magazines; and only a few, such as ALGOL, BASIC, COBOL, FORTRAN, and PL/1, become known to a wider public through various text- and handbooks. The situation surrounding the application of these languages in many computer centers is a similar one.

    There are differing opinions on the concept "programming languages". What is called a programming language by some may be termed a program, a processor, or a generator by others. Since there are no sharp borderlines in the field of programming languages, works were considered here which deal with machine languages, assemblers, autocoders, syntax and compilers, processors and generators, as well as with general higher programming languages.

    The bibliography contains some 2,700 titles of books, magazines and essays for around 300 programming languages. However, as shown by the "Overview of Existing Programming Languages", there are more than 300 such languages. The "Overview" lists a total of 676 programming languages, but this is certainly incomplete. One author ' has already announced the "next 700 programming languages"; it is to be hoped the many users may be spared such a great variety for reasons of compatibility. The graphic representations (illustrations 1 & 2) show the development and proportion of the most widely-used programming languages, as measured by the number of publications listed here and by the number of computer manufacturers and software firms who have implemented the language in question. The illustrations show FORTRAN to be in the lead at the present time. PL/1 is advancing rapidly, although PL/1 compilers are not yet seen very often outside of IBM.

    Some experts believe PL/1 will replace even the widely-used languages such as FORTRAN, COBOL, and ALGOL.4) If this does occur, it will surely take some time - as shown by the chronological diagram (illustration 2) .

    It would be desirable from the user's point of view to reduce this language confusion down to the most advantageous languages. Those languages still maintained should incorporate the special facets and advantages of the otherwise superfluous languages. Obviously such demands are not in the interests of computer production firms, especially when one considers that a FORTRAN program can be executed on nearly all third-generation computers.

    The titles in this bibliography are organized alphabetically according to programming language, and within a language chronologically and again alphabetically within a given year. Preceding the first programming language in the alphabet, literature is listed on several languages, as are general papers on programming languages and on the theory of formal languages (AAA).
    As far as possible, the most of titles are based on autopsy. However, the bibliographical description of sone titles will not satisfy bibliography-documentation demands, since they are based on inaccurate information in various sources. Translation titles whose original titles could not be found through bibliographical research were not included. ' In view of the fact that nany libraries do not have the quoted papers, all magazine essays should have been listed with the volume, the year, issue number and the complete number of pages (e.g. pp. 721-783), so that interlibrary loans could take place with fast reader service. Unfortunately, these data were not always found.

    It is hoped that this bibliography will help the electronic data processing expert, and those who wish to select the appropriate programming language from the many available, to find a way through the language Babel.

    We wish to offer special thanks to Mr. Klaus G. Saur and the staff of Verlag Dokumentation for their publishing work.

    Graz / Austria, May, 1973
  • Library of Congress Subject Headings C284 view details