AUTOCODER(ID:2989/aut008)

IBM generalised autocode 


Autocode system for IBM 1410 to 701/702/705/7090

Hard to work out what actually happened here, as the documentation is awry. It seems that successive versions added complexity. Goldfinger continued this after leaving the NYAP program at NYU, and later continued the work on the Commercial Translator, and his work (and writing) shows a consistent theme.

702 April 1955
705-1 Dec 1956
705-3 Sept 1958

A note by Ray Saunders (see reference) suggests that a fair amount of the work had been done by people unofficially before being adopted as a product.



People: Hardware:
Related languages
NYAP => AUTOCODER   Evolution of
SPS => AUTOCODER   Adaptation of
AUTOCODER => AUTOCODER II   Evolution of
AUTOCODER => BASIC AUTOCODER   Implementation
AUTOCODER => COMTRAN   Evolution of aspects
AUTOCODER => INTERCOM   Influence

References:
  • [IBM] "702 Assembly and Loading Procedure" EDPM Program Brief 4, IBM, New York, N. Y., May 1955 view details
  • [IBM] "702 AUTOCODER System" EDPM Program Brief 10, IBM, New York, N. Y., 1955 view details
  • Goldfinger, Roy "The IBM Type 705 Autocoder" view details
          in [JCC 09] Proceedings of the Western Joint Computer Conference, San Francisco, Calif., 1956 view details
  • Bemer, R. W. "The Status of Automatic Programming for Scientific Problems" view details Abstract: A catalogue of automatic coding systems that are either operational or in the process of development together with brief descriptions of some of the more important ones Extract: Summary
    Let me elaborate these points with examples. UNICODE is expected to require about fifteen man-years. Most modern assembly systems must take from six to ten man-years. SCAT expects to absorb twelve people for most of a year. The initial writing of the 704 FORTRAN required about twenty-five man-years. Split among many different machines, IBM's Applied Programming Department has over a hundred and twenty programmers. Sperry Rand probably has more than this, and for utility and automatic coding systems only! Add to these the number of customer programmers also engaged in writing similar systems, and you will see that the total is overwhelming.
    Perhaps five to six man-years are being expended to write the Alodel 2 FORTRAN for the 704, trimming bugs and getting better documentation for incorporation into the even larger supervisory systems of various installations. If available, more could undoubtedly be expended to bring the original system up to the limit of what we can now conceive. Maintenance is a very sizable portion of the entire effort going into a system.
    Certainly, all of us have a few skeletons in the closet when it comes to adapting old systems to new machines. Hardly anything more than the flow charts is reusable in writing 709 FORTRAN; changes in the characteristics of instructions, and tricky coding, have done for the rest. This is true of every effort I am familiar with, not just IBM's.
    What am I leading up to? Simply that the day of diverse development of automatic coding systems is either out or, if not, should be. The list of systems collected here illustrates a vast amount of duplication and incomplete conception. A computer manufacturer should produce both the product and the means to use the product, but this should be done with the full co-operation of responsible users. There is a gratifying trend toward such unification in such organizations as SHARE, USE, GUIDE, DUO, etc. The PACT group was a shining example in its day. Many other coding systems, such as FLAIR, PRINT, FORTRAN, and USE, have been done as the result of partial co-operation. FORTRAN for the 705 seems to me to be an ideally balanced project, the burden being carried equally by IBM and its customers.
    Finally, let me make a recommendation to all computer installations. There seems to be a reasonably sharp distinction between people who program and use computers as a tool and those who are programmers and live to make things easy for the other people. If you have the latter at your installation, do not waste them on production and do not waste them on a private effort in automatic coding in a day when that type of project is so complex. Offer them in a cooperative venture with your manufacturer (they still remain your employees) and give him the benefit of the practical experience in your problems. You will get your investment back many times over in ease of programming and the guarantee that your problems have been considered.
    Extract: IT, FORTRANSIT, SAP, SOAP, SOHIO
    The IT language is also showing up in future plans for many different computers. Case Institute, having just completed an intermediate symbolic assembly to accept IT output, is starting to write an IT processor for UNIVAC. This is expected to be working by late summer of 1958. One of the original programmers at Carnegie Tech spent the last summer at Ramo-Wooldridge to write IT for the 1103A. This project is complete except for input-output and may be expected to be operational by December, 1957. IT is also being done for the IBM 705-1, 2 by Standard Oil of Ohio, with no expected completion date known yet. It is interesting to note that Sohio is also participating in the 705 FORTRAN effort and will undoubtedly serve as the basic source of FORTRAN-to- IT-to-FORTRAN translational information. A graduate student at the University of Michigan is producing SAP output for IT (rather than SOAP) so that IT will run on the 704; this, however, is only for experience; it would be much more profitable to write a pre-processor from IT to FORTRAN (the reverse of FOR TRANSIT) and utilize the power of FORTRAN for free.
          in "Proceedings of the Fourth Annual Computer Applications Symposium" , Armour Research Foundation, Illinois Institute of Technology, Chicago, Illinois 1957 view details
  • [Bemer, RW] [State of ACM automatic coding library August 1958] view details
          in "Proceedings of the Fourth Annual Computer Applications Symposium" , Armour Research Foundation, Illinois Institute of Technology, Chicago, Illinois 1957 view details
  • Asch, Alfred. 1959 July 29. Minutes of Committee Meeting on Data Systems Languages Held at Bureau of Standards, June 23-24. (Cited in Sammet 1978) view details Extract: Languages examined by CODASYL
    An important decision of the committee was to agree (Asch, 1959) "that the following language systems and programming aids would be reviewed by the committee: AIMACO, Comtran [sic], Flowmatic [sic], Autocoder III, SURGE, Fortran, RCA 501 Assembler, Report Generator (GE Hanford) , APG-I (Dupont)"
          in "Proceedings of the Fourth Annual Computer Applications Symposium" , Armour Research Foundation, Illinois Institute of Technology, Chicago, Illinois 1957 view details
  • Carr, John W III; "Computer Programming" volume 2, chapter 2, pp115-121 view details
          in E. M. Crabbe, S. Ramo, and D. E. Wooldridge (eds.) "Handbook of Automation, Computation, and Control," John Wiley & Sons, Inc., New York, 1959. view details
  • Weik, Martin H. "A Third Survey of Domestic Electronic Digital Computing Systems" Rpt 1115, BRL, Maryland, 1961 view details External link: Online copy at Computer History Museum Extract: LARC details
    Univac LARC is designed for large-scale business data processing as well as scientific computing. This includes any problems requiring large amounts of input/output and extremely fast computing, such as data retrieval, linear programming, language translation, atomic codes, equipment design, largescale customer accounting and billing, etc.

        University of California
        Lawrence Radiation Laboratory
        Located at Livermore, California, system is used for the
        solution of differential equations.
    [?]
    Outstanding features are ultra high computing speeds and the input-output control completely independent of computing. Due to the Univac LARC's unusual design features, it is possible to adapt any source of input/output to the Univac LARC. It combines the advantages of Solid State components, modular construction, overlapping operations, automatic error correction and a very fast and a very large memory system.
    [?]
    Outstanding features include a two computer system (arithmetic, input-output processor); decimal fixed or floating point with provisions for double
    precision for double precision arithmetic; single bit error detection of information in transmission and arithmetic operation; and balanced ratio of high speed auxiliary storage with core storage.
    Unique system advantages include a two computer system, which allows versatility and flexibility for handling input-output equipment, and program interrupt on programmer contingency and machine error, which allows greater ease in programming.
          in E. M. Crabbe, S. Ramo, and D. E. Wooldridge (eds.) "Handbook of Automation, Computation, and Control," John Wiley & Sons, Inc., New York, 1959. view details
  • Bemer, R "ISO TC97/SC5/WGA(1) Survey of Programming Languages and Processors" December 1962 view details
          in [ACM] CACM 6(03) (Mar 1963) view details
  • Weik, Martin H. "A Fourth Survey of Domestic Electronic Digital Computing Systems" Report No. 1227, January 1964 Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland view details External link: Online copy at Computer History Museum
          in [ACM] CACM 6(03) (Mar 1963) view details
  • Stock, Marylene and Stock, Karl F. "Bibliography of Programming Languages: Books, User Manuals and Articles from PLANKALKUL to PL/I" Verlag Dokumentation, Pullach/Munchen 1973 66 view details Abstract: PREFACE  AND  INTRODUCTION
    The exact number of all the programming languages still in use, and those which are no longer used, is unknown. Zemanek calls the abundance of programming languages and their many dialects a "language Babel". When a new programming language is developed, only its name is known at first and it takes a while before publications about it appear. For some languages, the only relevant literature stays inside the individual companies; some are reported on in papers and magazines; and only a few, such as ALGOL, BASIC, COBOL, FORTRAN, and PL/1, become known to a wider public through various text- and handbooks. The situation surrounding the application of these languages in many computer centers is a similar one.

    There are differing opinions on the concept "programming languages". What is called a programming language by some may be termed a program, a processor, or a generator by others. Since there are no sharp borderlines in the field of programming languages, works were considered here which deal with machine languages, assemblers, autocoders, syntax and compilers, processors and generators, as well as with general higher programming languages.

    The bibliography contains some 2,700 titles of books, magazines and essays for around 300 programming languages. However, as shown by the "Overview of Existing Programming Languages", there are more than 300 such languages. The "Overview" lists a total of 676 programming languages, but this is certainly incomplete. One author ' has already announced the "next 700 programming languages"; it is to be hoped the many users may be spared such a great variety for reasons of compatibility. The graphic representations (illustrations 1 & 2) show the development and proportion of the most widely-used programming languages, as measured by the number of publications listed here and by the number of computer manufacturers and software firms who have implemented the language in question. The illustrations show FORTRAN to be in the lead at the present time. PL/1 is advancing rapidly, although PL/1 compilers are not yet seen very often outside of IBM.

    Some experts believe PL/1 will replace even the widely-used languages such as FORTRAN, COBOL, and ALGOL.4) If this does occur, it will surely take some time - as shown by the chronological diagram (illustration 2) .

    It would be desirable from the user's point of view to reduce this language confusion down to the most advantageous languages. Those languages still maintained should incorporate the special facets and advantages of the otherwise superfluous languages. Obviously such demands are not in the interests of computer production firms, especially when one considers that a FORTRAN program can be executed on nearly all third-generation computers.

    The titles in this bibliography are organized alphabetically according to programming language, and within a language chronologically and again alphabetically within a given year. Preceding the first programming language in the alphabet, literature is listed on several languages, as are general papers on programming languages and on the theory of formal languages (AAA).
    As far as possible, the most of titles are based on autopsy. However, the bibliographical description of sone titles will not satisfy bibliography-documentation demands, since they are based on inaccurate information in various sources. Translation titles whose original titles could not be found through bibliographical research were not included. ' In view of the fact that nany libraries do not have the quoted papers, all magazine essays should have been listed with the volume, the year, issue number and the complete number of pages (e.g. pp. 721-783), so that interlibrary loans could take place with fast reader service. Unfortunately, these data were not always found.

    It is hoped that this bibliography will help the electronic data processing expert, and those who wish to select the appropriate programming language from the many available, to find a way through the language Babel.

    We wish to offer special thanks to Mr. Klaus G. Saur and the staff of Verlag Dokumentation for their publishing work.

    Graz / Austria, May, 1973
          in [ACM] CACM 6(03) (Mar 1963) view details
    Resources
    • Saunders, Ray "MVS... And Before OS/360 ?'
      It's interesting to watch the development of ideas in this business. IBM's software for 2nd generation hardware was all started by customers, not any IBM planned projects. 1401 Autocoder was written by IBM SEs installing 7090s and fed up with coding the the 1401s in Machine Language (1401 SPS was field-written by IBM CEs and SEs in the process of installing 1401's as adjuncts to 7090s ...corporate took it over, called it SPS and it developed into Autocoder. When I first joined IBM, I worked for a ex-CE, one of the original coders of that software).

      external link