DOI(ID:3002/doi001)

Wheeler 


quote from Campbell-Kelly:
"At the University of Illinois, the programming system for the ILLIAC was developed by Wheeler during 1951-1953. The input routine for the ILLIAC - Decimal Order Input (DOI) - was functionally similar to the EDSAC initial orders and was used until about 1956 when it was replaced by one allowing symbolic addresses."

Bemer 1957 calls it "Decimal Input"


Related languages
EDSAC Initial Orders => DOI   Based on
DOI => DASK initial orders   Based on
DOI => ILLIAC   Evolution of
DOI => ORACLE Order Code   Adaptation of
DOI => SYLLIAC Initial orders   Based on
DOI => WEIZAC Initial orders   Based on

References:
  • Bemer, R. W. "The Status of Automatic Programming for Scientific Problems" view details Abstract: A catalogue of automatic coding systems that are either operational or in the process of development together with brief descriptions of some of the more important ones Extract: Summary
    Let me elaborate these points with examples. UNICODE is expected to require about fifteen man-years. Most modern assembly systems must take from six to ten man-years. SCAT expects to absorb twelve people for most of a year. The initial writing of the 704 FORTRAN required about twenty-five man-years. Split among many different machines, IBM's Applied Programming Department has over a hundred and twenty programmers. Sperry Rand probably has more than this, and for utility and automatic coding systems only! Add to these the number of customer programmers also engaged in writing similar systems, and you will see that the total is overwhelming.
    Perhaps five to six man-years are being expended to write the Alodel 2 FORTRAN for the 704, trimming bugs and getting better documentation for incorporation into the even larger supervisory systems of various installations. If available, more could undoubtedly be expended to bring the original system up to the limit of what we can now conceive. Maintenance is a very sizable portion of the entire effort going into a system.
    Certainly, all of us have a few skeletons in the closet when it comes to adapting old systems to new machines. Hardly anything more than the flow charts is reusable in writing 709 FORTRAN; changes in the characteristics of instructions, and tricky coding, have done for the rest. This is true of every effort I am familiar with, not just IBM's.
    What am I leading up to? Simply that the day of diverse development of automatic coding systems is either out or, if not, should be. The list of systems collected here illustrates a vast amount of duplication and incomplete conception. A computer manufacturer should produce both the product and the means to use the product, but this should be done with the full co-operation of responsible users. There is a gratifying trend toward such unification in such organizations as SHARE, USE, GUIDE, DUO, etc. The PACT group was a shining example in its day. Many other coding systems, such as FLAIR, PRINT, FORTRAN, and USE, have been done as the result of partial co-operation. FORTRAN for the 705 seems to me to be an ideally balanced project, the burden being carried equally by IBM and its customers.
    Finally, let me make a recommendation to all computer installations. There seems to be a reasonably sharp distinction between people who program and use computers as a tool and those who are programmers and live to make things easy for the other people. If you have the latter at your installation, do not waste them on production and do not waste them on a private effort in automatic coding in a day when that type of project is so complex. Offer them in a cooperative venture with your manufacturer (they still remain your employees) and give him the benefit of the practical experience in your problems. You will get your investment back many times over in ease of programming and the guarantee that your problems have been considered.
    Extract: IT, FORTRANSIT, SAP, SOAP, SOHIO
    The IT language is also showing up in future plans for many different computers. Case Institute, having just completed an intermediate symbolic assembly to accept IT output, is starting to write an IT processor for UNIVAC. This is expected to be working by late summer of 1958. One of the original programmers at Carnegie Tech spent the last summer at Ramo-Wooldridge to write IT for the 1103A. This project is complete except for input-output and may be expected to be operational by December, 1957. IT is also being done for the IBM 705-1, 2 by Standard Oil of Ohio, with no expected completion date known yet. It is interesting to note that Sohio is also participating in the 705 FORTRAN effort and will undoubtedly serve as the basic source of FORTRAN-to- IT-to-FORTRAN translational information. A graduate student at the University of Michigan is producing SAP output for IT (rather than SOAP) so that IT will run on the 704; this, however, is only for experience; it would be much more profitable to write a pre-processor from IT to FORTRAN (the reverse of FOR TRANSIT) and utilize the power of FORTRAN for free.
          in "Proceedings of the Fourth Annual Computer Applications Symposium" , Armour Research Foundation, Illinois Institute of Technology, Chicago, Illinois 1957 view details
  • Carr, John W III; "Computer Programming" volume 2, chapter 2, pp115-121 view details
          in E. M. Crabbe, S. Ramo, and D. E. Wooldridge (eds.) "Handbook of Automation, Computation, and Control," John Wiley & Sons, Inc., New York, 1959. view details
  • Stock, Karl F. "A listing of some programming languages and their users" in RZ-Informationen. Graz: Rechenzentrum Graz 1971 74 view details Abstract: 321 Programmiersprachen mit Angabe der Computer-Hersteller, auf deren Anlagen die entsprechenden Sprachen verwendet werden kennen. Register der 74 Computer-Firmen; Reihenfolge der Programmiersprachen nach der Anzahl der Herstellerfirmen, auf deren Anlagen die Sprache implementiert ist; Reihenfolge der Herstellerfirmen nach der Anzahl der verwendeten Programmiersprachen.

    [321 programming languages with indication of the computer manufacturers, on whose machinery the appropriate languages are used to know.  Register of the 74 computer companies;  Sequence of the programming languages after the number of manufacturing firms, on whose plants the language is implemented;  Sequence of the manufacturing firms after the number of used programming languages.]
          in E. M. Crabbe, S. Ramo, and D. E. Wooldridge (eds.) "Handbook of Automation, Computation, and Control," John Wiley & Sons, Inc., New York, 1959. view details
  • Stock, Marylene and Stock, Karl F. "Bibliography of Programming Languages: Books, User Manuals and Articles from PLANKALKUL to PL/I" Verlag Dokumentation, Pullach/Munchen 1973 88 view details Abstract: PREFACE  AND  INTRODUCTION
    The exact number of all the programming languages still in use, and those which are no longer used, is unknown. Zemanek calls the abundance of programming languages and their many dialects a "language Babel". When a new programming language is developed, only its name is known at first and it takes a while before publications about it appear. For some languages, the only relevant literature stays inside the individual companies; some are reported on in papers and magazines; and only a few, such as ALGOL, BASIC, COBOL, FORTRAN, and PL/1, become known to a wider public through various text- and handbooks. The situation surrounding the application of these languages in many computer centers is a similar one.

    There are differing opinions on the concept "programming languages". What is called a programming language by some may be termed a program, a processor, or a generator by others. Since there are no sharp borderlines in the field of programming languages, works were considered here which deal with machine languages, assemblers, autocoders, syntax and compilers, processors and generators, as well as with general higher programming languages.

    The bibliography contains some 2,700 titles of books, magazines and essays for around 300 programming languages. However, as shown by the "Overview of Existing Programming Languages", there are more than 300 such languages. The "Overview" lists a total of 676 programming languages, but this is certainly incomplete. One author ' has already announced the "next 700 programming languages"; it is to be hoped the many users may be spared such a great variety for reasons of compatibility. The graphic representations (illustrations 1 & 2) show the development and proportion of the most widely-used programming languages, as measured by the number of publications listed here and by the number of computer manufacturers and software firms who have implemented the language in question. The illustrations show FORTRAN to be in the lead at the present time. PL/1 is advancing rapidly, although PL/1 compilers are not yet seen very often outside of IBM.

    Some experts believe PL/1 will replace even the widely-used languages such as FORTRAN, COBOL, and ALGOL.4) If this does occur, it will surely take some time - as shown by the chronological diagram (illustration 2) .

    It would be desirable from the user's point of view to reduce this language confusion down to the most advantageous languages. Those languages still maintained should incorporate the special facets and advantages of the otherwise superfluous languages. Obviously such demands are not in the interests of computer production firms, especially when one considers that a FORTRAN program can be executed on nearly all third-generation computers.

    The titles in this bibliography are organized alphabetically according to programming language, and within a language chronologically and again alphabetically within a given year. Preceding the first programming language in the alphabet, literature is listed on several languages, as are general papers on programming languages and on the theory of formal languages (AAA).
    As far as possible, the most of titles are based on autopsy. However, the bibliographical description of sone titles will not satisfy bibliography-documentation demands, since they are based on inaccurate information in various sources. Translation titles whose original titles could not be found through bibliographical research were not included. ' In view of the fact that nany libraries do not have the quoted papers, all magazine essays should have been listed with the volume, the year, issue number and the complete number of pages (e.g. pp. 721-783), so that interlibrary loans could take place with fast reader service. Unfortunately, these data were not always found.

    It is hoped that this bibliography will help the electronic data processing expert, and those who wish to select the appropriate programming language from the many available, to find a way through the language Babel.

    We wish to offer special thanks to Mr. Klaus G. Saur and the staff of Verlag Dokumentation for their publishing work.

    Graz / Austria, May, 1973
          in E. M. Crabbe, S. Ramo, and D. E. Wooldridge (eds.) "Handbook of Automation, Computation, and Control," John Wiley & Sons, Inc., New York, 1959. view details
  • Campbell-Kelly, Martin "The Development of Computer Programming in Britain (1945 to 1955)" view details Extract: Conclusions
    Conclusions
    When we compare the development of programming at the three centers -- Cambridge, Manchester, and Teddington -- there are several factors to consider. First, we must consider the quality of the programming system; this is a subjective issue that ranges from the purely aesthetic to the severely practical -- for example, from the elegance of an implementation at one extreme to the speed of a matrix inversion at the other. We must also consider the failures of the three centers, especially the failure to devise a programming system that exploited the full potential of the hardware. Finally, we must consider the influence of the programming systems on other groups; this is less subjective -- it was described in the previous two sections and is summarized in Figure 2.

    Few could argue that Cambridge devised the best of the early programming systems. The work done by Wilkes and Wheeler stood out as a model of programming excellence. Cambridge made several outstanding contributions to early programming: the use of closed subroutines and parameters, the systematic organization of a subroutine library, interpretive routines, and the development of debugging routines. Perhaps the finest innovation was the use of a symbolic notation for programming, as opposed to the use of octal or some variant. It is difficult for us today to appreciate the originality of this concept.
    If Cambridge can be said to have had a failure, it was the failure to develop programming languages and autocodes during the middle and late 1950s, as reflected in the second edition of Wilkes, Wheeler, and Gill (1957), of which Hamming said in a review,

    It is perhaps inevitable that the second edition, though thoroughly revised, does not represent an equally great step forward, but it is actually disappointing to find that they are no longer at the forefront of theoretical coding. (Hamming 1958)]

    By neglecting research into programming languages, Cambridge forfeited its preeminence in the programming field.

    In the early 1950s, however, Cambridge was by far the most important influence on programming in Britain. This came about partly through the excellence of the programming system and partly through the efforts that Cambridge made to promote its ideas. Two machines (I`EO and TREAC) based their programming system directly on EDSAC, and five machines (Nicholas, the Elliott 401 and 402, MOSAIC, and Pegasus) were strongly influenced by it. It is also probably true that no programming group was entirely uninfluenced by the Cambridge work. Overseas, the influence of the EDSAC programming system was just as great, largely through the classic programming textbook by Wilkes, Wheeler, and Gill (1951) (see Campbell-Kelly 1980a).

    At Manchester the programming system devised by Turing for the Mark I makes a disappointing contrast with the elegance of the Cambridge work. From the point of view of notation, it is difficult to find a single redeeming feature. Probably the only feature of real merit was the concept of dividing a program into physical and logical pages. Echoes of this idea can be discerned in today's segmented computers.

    In its way, Turing's programming system did have considerable influence, for all efforts to replace it with something more suitable were curiously unsuccessful.

    Thus programmers for both Mark Is and all seven Mark Iota's had to struggle with Turing's clumsy teleprinter notation throughout the life of these machines. Here is perhaps one of the most valuable lessons of this study: poor design decisions taken early on are almost impossible to correct later. Thus even when people with a Cambridge background arrived at Manchester, they were unable to make a really fresh start. By producing two successive input routines that were not much better than Turing's, they managed to combine the worst of both worlds: an unsatisfactory programming system that was not even a stable one.

    The one real high spot of the Manchester programming activity was Brooker's Mark I Autocode. Brooker's achievement was the most important programming event of the mid-1950s in Britain. If Brooker had not devised his autocode at that time, programming in Britain might have developed very differently. The autocodes for DEUCE and Pegasus were directly inspired by Brooker's and had considerable notational similarities with it. Beyond the time scale of this paper, Brooker's Mark I Autocode and his later Mercury Autocode (1958) were a dominant influence on British programming until well into the 1960s, when languages such as ALGOL 60 and FORTRAN came onto the scene in Britain.

    Of the three programming systems devised at Cambridge, Manchester, and Teddington, it is probably the latter that inspires the least passion. Ii the punching of programs in pure binary was an efficient method, it was also a singularly uninspiring one. Curiously, aficionados of the Pilot ACE and the DEUCE had great enthusiasm for programming these machines, which really had more to do with the joys of optimum coding and exploiting the eccentric architecture than with any merits of the programming system.

    In many ways the crudity of the programming system for the Pilot ACE was understandable: the speed of events, the lack of a backing store, and so on. But perpetuating it on the DEUCE was a minor tragedy; by replicating the programming system on the 32 commercially manufactured DEUCES, literally hundreds of rank-and-file programmers were imbued in this poor style of programming. MOSAIC (Section 3.4) shows that it was entirely possible to devise a satisfactory programming system for machines of the ACE pattern; it is most unfortunate that this work was not well enough known to influence events.

    NPL did, however, have one notable programming-success: the GIP matrix scheme devised by Woodger and Munday. This scheme became the sole reason for the existence of many DEUCES. The reliability of the mathematical programs produced by NPL, their comprehensiveness, and their speed have become almost legendary. A history of numerical methods in Britain would no doubt reveal the true role of NPL in establishing the methods of linear algebra as an analytical tool for the engineer.

    In an interview, P. M. Woodward, one of the principals of the TREAC programming activity, recalled, "Our impression was that Cambridge mattered in software whereas Manchester mattered in hardware" (Woodward and Jenkins 1977). He might well have added that NPL mattered in numerical methods.

    Because this paper has been primarily concerned with the development of programming during the period 1945-1955, Cambridge has received pride of place as the leading innovator. Had the paper been concerned principally with hardware or numerical methods, however, the ranking of the three centers would have been different. But considered purely as innovators of programming, there can be no question that Cambridge stood well above the rest.
    Abstract: By 1950 there were three influential centers of programming in Britain where working computers had been constructed: Cambridge University (the EDSAC), Manchester University (the Mark I), and the National Physical Laboratory (the Pilot ACE). At each of these centers a distinctive style of programming evolved, largely independently of the others. This paper describes how the three schools of programming influenced programming for the other stored-program computers constructed in Britain up to the year 1955. These machines included several prototype and research computers, as well as five commercially manufactured machines. The paper concludes with a comparative assessment of the three schools of programming.


          in Annals of the History of Computing 4(2) April 1982 IEEE view details